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Abstract. We have performedab initio calculations of CaS, CaSe and CaTe in the B1 (NaCl)
and B2 (CsCl) phase. For each compound, we report results for the standard cohesive properties
(equilibrium lattice parameters, bulk moduli, cohesive energies), for the equation of state and
for the phase transition (transition pressure, compression ratio at the phase transition, percentage
change of volume in the phase transition). A detailed comparison with recent experimental
results is also performed.

1. Introduction

In a recent article [1], Luoet al performed an extensive experimental study of the behaviour
of CaS, CaSe and CaTe under pressure. They showed that the first two compounds have a
phase transition from the B1 (NaCl) to the B2 (CsCl) phase at a pressure of a few tenths
of a GPa, and that CaTe first transforms to an intermediate state which is a mixture of the
NaCl and MnP phases and then, at a pressure slightly greater than 30 Gpa, to the B2 phase.
Their work, together with previous studies of CaO [2–4] and of CaTe [5] performed by
other authors, provides a complete experimental description of the calcium chalcogenides
under pressures up to almost 60 GPa.

In a preceding article [6], Cortonaet al reported the results ofab initio calculations for
all the alkali-earth sulphides. As their article was written practically at the same time as
[1], a comparison of the theoretical results for CaS with the experimental data of Luoet al
could not be included. The calculated equation of state was compared with the old data
of Perez-Albuerne and Drickamer [7] (which only concern the B1 phase) and the transition
pressure with the value estimated by Zimmeret al [5] on the basis of the observed trend
of the transition pressures of various compounds.

In the present paper, the results ofab initio calculations for all the compounds considered
by Luo et al [1] are reported, and an extensive comparison is made with their experimental
data.

2. The method

As the method used for our calculations has been extensively described elsewhere [8, 9],
only a brief summary of it is reported here. The framework is that of density-functional
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theory [10], and the method is based on a partition of a system in atomic-like subsystems.
The electron density of each subsystem (to be determined) is written in terms of one-electron
wavefunctions as follows:

ρj (r) =
∑
i

2nij |ψij (r)|2 (1)

where j specifies the subsystem,i stands for the quantum numbers characterizing the
wavefunctions of the subsystem,nij are fermionic occupation numbers and the factor of
2 comes from the sum on the spin coordinate. The total electron densityρ of the overall
system is then constructed by superposing the subsystem densities.

Considering the total energy of the system, all the contributions can be explicitly written
in terms of the total electron density (at least if the local approximation is used for the
exchange and correlation energy) with the exception of the kinetic energy. The latter is
then split into two terms,

T [ρ] =
∑
j

T [nij , ψij ] +
(
T [ρ] −

∑
j

T [nij , ψij ]

)
(2)

where the first is the sum of the internal kinetic energies of the subsystems defined by the
usual expression

T [nij , ψij ] =
∑
i

2nij 〈ψij | − 1
2∇2|ψij 〉 (3)

while the second gives the contribution to the kinetic energy coming from the interactions
among the subsystems. For this second term an approximation is introduced: ifT approx [ρ] is
any approximate expression of the kinetic energy functional, the parenthesis in equation (2)
is replaced byT approx [ρ] −∑j T

approx [ρj ]. This gives rise to a total energy functional
which can be written as follows:

Eapproxν [nij , ψij ] =
∑
j

T [nij , ψij ] +
(
T approx [ρ] −

∑
j

T approx [ρj ]

)
+ J [ρ] + Eapproxxc [ρ]

+
∫
Vext (r)ρ(r) d3r (4)

where Vext (r) is the potential generated by the nuclear charges,J is the electrostatic
interaction energy of the electrons andEapproxxc is any approximate expression of the
exchange-correlation energy functional. MinimizingEapproxν [nij , ψij ] with respect to the
wavefunctionsψij and the occupation numbersnij , the following equation is obtained:(
−1

2
∇2+ Vext (r)+ δJ

δρ
+ δE

approx
xc

δρ
+ δT

approx

δρ
+ δT

approx

δρj

)
ψij (r) = εijψij (r) (5)

which must be solved self-consistently, with the occupation numbers chosen according to
Fermi statistics [8]. Using the solutions of equation (5), one can construct the electron
density of the system and calculate its total energy.

3. Technical remarks

The calculations were performed using the local-density approximation for the inter-
subsystem kinetic energy, for the exchange and for the correlation energy. The latter was
taken into account by means of the Perdew and Zunger expression [11].

The effective potential in equation (5) was spherically-averaged around each atomic
site. However, the total energy of the system was calculated by performing tri-dimensional
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integrations within the primitive cell: thus, the nonspherical contributions are included at
the level of accuracy of first-order perturbation theory. Further details on this subject can
be found in [12].

For each compound, we have performed 21 self-consistent calculations corresponding
to lattice parameters spaced at 0.05Å for the B1 structure and 0.03̊A for the B2 structure.
These lattice parameters were chosen to be approximately symmetrically distributed around
the calculated equilibrium lattice constant. A very high level of self-consistency was
required [13]. The calculated total energies were fitted by polynomials of the lattice
parametera and of V −2/3, V being the volume of the primitive cell of the crystal.
Polynomials of degrees varying from two up to six were used in both cases. The fits
were repeated, reducing progressively the number of total energy values in a symmetric
way around the minimum in order to evaluate the uncertainties in the calculated values.
An example of this kind of analysis is given in tables 1 and 2, where we report part of
the results we have found for the bulk modulus of CaSe in the B1 phase (table 1), and for
its derivative with respect to the pressure (table 2). On the basis of this analysis, we have
reported in tables 3–5 results which are affected by numerical errors smaller than one unity
on the last digit shown.

Table 1. Calculated bulk modulus values of CaSe in the B1 phase.

Degrees of polynomials used for best fit
Polynomial No total energy
variables values used in fit 2 3 4 5 6

a 21 52.865 58.508 56.458 56.233 56.242
15 60.480 57.673 56.196 56.241 56.249

9 59.428 56.653 56.247 56.254 56.442

V −2/3 21 56.022 56.204 56.246 56.244 56.242
15 56.382 56.232 56.246 56.241 56.243

9 56.366 56.222 56.239 56.249 56.412

Table 2. Values of the bulk modulus derivative with respect to the pressure atp = 0 for CaSe
in the B1 phase.

Degrees of polynomials used for best fit
Polynomial No total energy
variables values used in fit 3 4 5 6

a 21 3.827 4.216 4.141 4.138
15 4.254 4.183 4.143 4.162

9 4.292 4.197 4.208 4.227

V −2/3 21 4.132 4.133 4.136 4.137
15 4.126 4.134 4.142 4.170

9 4.174 4.184 4.204 4.256

For the compounds considered in the present paper, an extensive comparison of our
results with those of otherab initio density-functional calculations is impossible. In fact,
we have found only one calculation of the cohesive properties for one of these cristals:
this was carried out by Yamashita and Asano for CaS by the KKR method [14]. The
lattice parameter, the cohesive energy and the bulk modulus obtained by these authors were
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5.708Å, 10.09 eV and 61 GPa, respectively. Furthermore, they found that the equilibium
phase atp = 0 should be the B2 one, in contradiction with the experiment. In contrast, some
oxides (MgO and CaO, in particular) have been extensively studied in the past by a variety
of ab initio methods. A detailed comparison with our results can be found in [15] (see also
[12] for a comparison of the B1→ B2 transition pressures). We just recall here that the main
conclusions were the following: (i) for these compounds our method is as accurate as the
full-potential linearized-augmented-plane-waves (FLAPW) method, and more accurate than
the methods using pseudopotentials or the atomic-sphere approximation; (ii) the differences
between our results and those obtained by a given approach (for example, FLAPW) are not
greater than the differences between results obtained by different band structure calculations
(for example, FLAPW and the pseudopotential method, or KKR and LMTO).

Finally, a comparison is also possible in the case of MgS. For this compound, our
results [6] agree very well with those obtained by Froyenet al [16], who used anab initio
pseudopotential approach.

4. Results and discussion

The results of our calculations for the cohesive properties of CaS, CaSe and CaTe are
reported in tables 3 and 4 for the B1 and B2 phases, respectively. In the same tables we
also report the corresponding experimental values [1, 17]. We recall thatB and B ′, the
bulk modulus and the derivative of the bulk modulus with respect to the pressure atp = 0,
have been obtained in [1] by fitting the results of static compression measurements by a
Birch–Murnagham equation of state:

p = 3

2
B

[(
V

V0

)−7/3

−
(
V

V0

)−5/3 ]{
1+ 3

4
(B ′ − 4)

[(
V

V0

)−2/3

− 1

]}
. (6)

It is important to notice thatV0, the equilibrium volume atp = 0, is a measured quantity
for the B1 phase, while it is a free fitting parameter for the B2 phase.

Table 3. Calculated cohesive properties of CaS, CaSe and CaTe in the B1 (NaCl) phase. The
experimental values of the lattice parametera, of the bulk modulusB and of the derivative of
the bulk modulus atp = 0, B ′, have been taken from [1]; the experimental cohesive energies
(referred to free atoms) have been deduced from the data reported in [17].

a (Å) E (eV) B (GPa) B ′

CaS Exp. 5.689 9.7 64 4.2
Theor. 5.598 9.95 65.2 4.1

CaSe Exp. 5.916 8.0 51 4.2
Theor. 5.829 8.94 56.2 4.1

CaTe Exp. 6.348 — 41.8 4.3
Theor. 6.231 7.61 45.4 4.2

Comparing the theoretical and the experimental results, it appears that they are in close
agreement. For the B1 phase, the discrepancies are smaller than 2% and 10% for the lattice
parameters and the bulk moduli, respectively. Furthermore, the thermal effects are not
included in the theoretical calculations. If they are taken into account, the lattice parameters
will slightly increase and the bulk moduli will decrease by a few GPa, thus the agreement
between theory and experiment will be enhanced. For the B2 phase, the discrepancies for
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Table 4. Calculated cohesive properties of CaS, CaSe and CaTe in the B2 (CsCl) phase. The
experimental values ofV0(B2)/V0(B1), B andB ′ have been taken from [1].

V0(B2)/V0(B1) B (GPa) B ′

CaS Exp. 0.90 64 4.2
Theor. 0.904 71.2 4.2

CaSe Exp. 0.91 51 4.2
Theor. 0.911 61.0 4.2

CaTe Exp. 0.95 41.8 4.3
Theor. 0.907 50.2 4.2

Figure 1. Equation of state of CaS. The full curve corresponds to the (calculated) equilibrium
phase. Full and open circles correspond to experimental data obtained by increasing and
decreasing the pressure, respectively.

the bulk moduli are greater, while the calculated and the experimental values of the ratio
V0(B2)/V0(B1) agree very well. However, these remarks should be considered with some
caution. For the B2 phase of each compound, there are only few experimental data points in
a small range of values ofp: consequently, the uncertainties on the fitted parameters should
be quite large. Furthermore, it can be noticed that Luoet al reported identical values ofB
andB ′ for the B1 and B2 phases. This may indicate that the available experimental data
were not sufficient for a three-parameter fit and that these authors have limited themselves
to optimize the value ofV0(B2)/V0(B1).

In figures 1–3, we have reported the experimental compression ratios as a function of
the applied pressure, using the same conventions as in [1]: full and open circles correspond
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Figure 2. Equation of state of CaSe. The full curve corresponds to the (calculated) equilibrium
phase. Full and open circles correspond to experimental data obtained by increasing and
decreasing the pressure, respectively.

to measurements performed by increasing and decreasing the pressure, respectively. In the
case of CaTe, Luoet al have only reported results for increasing pressures. The reason
for this is probably that the hysteresis of the compression–decompression process for this
compound is particularly strong: decreasing the pressure, the transformation to the B1 phase
is completed only at 1 GPa. Furthermore, CaTe, before transforming to the B2 structure,
transforms to a state which is a mixture of the NaCl and the MnP phases (the compression
ratios of the latter are represented by full squares in figure 3). Increasing the pressure, this
state is observed for pressures between about 25 GPa and 33 GPa.

The curves reported in the figures correspond to the calculated equations of state. It
appears that theory and experiment agree very well for the B1 phase. In the B2 case, our
calculations slightly overestimate the compression ratios of CaS and CaSe. In order to
understand the real meaning of this discrepancy, it is important to emphasize the role of
V0(B2)/V0(B1), the ratio of the equilibrium volumes atp = 0 of the B2 and B1 phases.
In fact, what is shown in the figures is not the equation of state of the B2 phase for the
various compounds, but its product withV0(B2)/V0(B1). Thus, the discrepancies can be
due to the imprecision either of the values of the parameters entering the equation of state
or of the ratioV0(B2)/V0(B1). For example, considering CaS, the calculated value of
V0(B2)/V0(B1) is 0.904. If, instead of this value,V0(B2)/V0(B1) is assumed to be equal
to 0.89, using the calculated values ofB andB ′ reported in table 4, one finds anexcellent
agreement with the experimental data. As the calculated value ofB is quite different
from the experimental one, this means that large changes ofB can be compensated by
slight modifications ofV0(B2)/V0(B1), the agreement with the experimental data remaining
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Figure 3. Equation of state of CaTe. The full curve corresponds to the (calculated) equilibrium
phase. The circles correspond to experimental data for the B1 and B2 phases; the squares
correspond to data for the intermediate phase which is a mixture of the NaCl and MnP ones.
Only experimental results obtained for increasing pressures are reported.

Table 5. Transition from the B1 (NaCl) to the B2 (CsCl) phase:pt = transition pressure;
Vt/V0 = compression ratio of the B1 phase at the transition pressure;−1V/V = percentage
change of volume. Experimental values from [1].

pt (GPa) Vt/V0 −1V/V (%)

CaS Exp. 40 0.73 10.2
Theor. 45 0.71 7.7

CaSe Exp. 38 0.70 7.7
Theor. 45 0.69 7.1

CaTe Exp. 33 0.74 —
Theor. 27 0.73 6.1

practically the same. In other words, the discrepancies between our calculated equations
of state and the experimental data can be interpreted as a relatively large error on the bulk
modulus or a relatively small error onV0(B2)/V0(B1), both interpretations being compatible
with the available experimental data.

Finally, in table 5 are reported the calculated and the experimental transition pressures
and some related quantities: the compression ratio of the B1 phase at the transition pressure
and the percentage change of volume in the phase transition. It appears that our calculations
slightly overestimate the transition pressures of CaS and CaSe, while, in the case of CaTe, the
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calculated value is within the range of pressures where this compound is in the intermediate
state. The compression ratios of the B1 phase at the transition pressures are in good
agreement with the experiment: this is a consequence of the good quality of the theoretical
equations of state and of the fact that the calculated transition pressures are not far from
the experimental ones. In contrast, the discrepancies are relatively large for the percentage
changes of volume: these discrepancies are almost entirely due to the overestimation of the
compression ratio of the B2 phase of CaS and CaSe.

5. Conclusions

Our method gives a good description of CaS, CaSe and CaTe in the B1 phase. The calculated
cohesive properties are in good agreement with the experiment, and the same is true for the
equations of state in the overall range of pressure where the B1 phase is the equilibrium
one.

For the B2 phase, there are some discrepancies between theory and experiment. The
interpretation of these discrepancies is not easy: this is mainly due to the fact that large
changes ofB can be compensated by small changes ofV0(B2)/V0(B1) without affecting in
a significant way the agreement with the experiment. This conclusion is true not only for
the compounds considered in this paper, for which only a small set of experimental data
is available, but also for CaO, whose B2 phase has been investigated in a larger range of
pressures [4].

The calculated transition pressures are in reasonable agreement with the experiment.
The differences between our theoretical values and those experimentally found are almost
equal (but of opposite sign) to the differences between the transition pressures observed for
increasing and decreasing pressures.

It would be interesting (and useful in experimental works) to know if our method gives
a good prediction of the difference between the bulk modulus of the B1 and B2 phase of a
given compound atp = 0. Unfortunately, the analysis performed in the present paper does
not answer this question: further investigations of this point are necessary.

Finally, we would like to recall that the method used in the present paper has some
interesting features: it makes practically no use of the translational symmetry of the crystals,
the computing time increases approximately in a linear way with the size of the system
and the effects due to an external perturbation can be easily taken into account. These
properties can be usefully exploited for studying partially disordered solids, large systems
or for calculating dielectric properties.
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